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Abstract

Anomaly detection has become an essential aspect of modern machine learning, particularly in scenarios where
labeled data is scarce or unavailable. This study presents a comparative analysis between two widely used
unsupervised algorithms: One-Class Support Vector Machine (OCSVM) and Isolation Forest. Using the MNIST
dataset as a benchmark, the evaluation focuses on score distribution, training time, precision measured by ROC-
AUC, and sensitivity to data variations. The results demonstrate distinct trade-offs between the two approaches.
OCSVM produces a centralized score distribution (0.4—0.5) and achieves superior classification performance with
a ROC-AUC of 0.92, which is statistically significant (p < 0.05 by DeLong’s test). This indicates that OCSVM is
highly effective in identifying structural deviations, making it suitable for applications requiring strict data
validation and reliability, such as fraud detection and critical quality control. However, this higher accuracy comes
at the cost of computational efficiency, as OCSVM requires approximately 120 seconds for training. In contrast,
Isolation Forest yields a more spread score distribution (0.3—0.7) and slightly lower precision (ROC-AUC 0.85),
but it significantly reduces training time to just 60 seconds. Moreover, its high sensitivity to minor variations
highlights its advantage in real-time anomaly detection and large-scale datasets where speed and adaptability are
crucial. Overall, the findings emphasize that OCSVM excels in precision-driven applications, while Isolation Forest
is more advantageous for scenarios that demand scalability and computational efficiency. These insights provide a
practical guideline for selecting appropriate anomaly detection methods depending on application requirements.
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1. INTRODUCTION

The MNIST (Modified National Institute of Standards and Technology) dataset remains a crucial benchmark
in machine learning, especially for classification and image-based anomaly detection tasks. Containing 70,000
grayscale images of handwritten digits (28x28 pixels), MNIST presents a robust environment for evaluating
unsupervised learning algorithms in the absence of explicit ground truth anomaly labels [1], [2]. In this context,
anomalies refer to digit patterns that deviate structurally from normative samples, such as a slanted '7' or a
malformed 'S', often resulting from writing noise or digit distortion [3].

Recent research has employed deep learning approaches like autoencoders, GANSs, and hybrid architectures
for anomaly detection, achieving promising results [1], [4]-[6]. However, such models often require large datasets,
extensive training times, and are vulnerable to overfitting or convergence issues [4], [5]. To address these
limitations, kernel-based models such as One-Class Support Vector Machines (OCSVM) have been favored due
to their strong generalization and robustness in high-dimensional feature spaces, particularly when coupled with
Radial Basis Function (RBF) kernels [6], [7]. While deep methods dominate recent literature, few studies directly
compare classical kernel-based (OCSVM) and tree-based (Isolation Forest) methods on MNIST using
standardized preprocessing (PCA-50) and provide visual, interpretable analysis linking algorithmic outputs to
actual digit deformations. This study fills this gap by conducting a comprehensive side-by-side qualitative and
quantitative comparison of OCSVM and Isolation Forest on MNIST, where anomalies are not only detected
numerically but also visually interpreted by mapping detected outliers to specific structural distortions.

In this study, OCSVM is selected as the primary anomaly detection method. To compare and validate its
effectiveness, we also apply the Isolation Forest (IF), a tree-based ensemble method known for its linear-time
complexity O(n) and suitability for unsupervised settings with large-scale datasets [8], [9]. Both methods are
evaluated on MNIST data after dimensionality reduction using Principal Component Analysis (PCA) to 50
components and standardization. Hyperparameters are optimized at v=0.05 for OCSVM and contamination=0.1
for IF. The study's contributions include: (1) comprehensive performance evaluation of OCSVM in detecting
visual anomalies in MNIST, (2) visual inspection and comparative analysis with IF-detected outliers, and (3)
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practical insights on the trade-off between precision (OCSVM) and scalability (IF), which are highly relevant for
real-world deployments.

2. RESEARCH METHODS

2.1. Data Preprocessing
The MNIST dataset, consisting of 10,000 test data and 60,000 training data, is used to begin the preprocessing

stage. The preprocessing procedure includes:

1. Normalization: To reduce brightness fluctuations and improve model training stability, pixel intensities (0-
255) are scaled to the interval [0,1].

2. Vectorization: To make 28x28 pixel images compatible with machine learning methods, the images are
converted into 784-dimensional vectors [10].

2.2. Dimension Reduction with PCA

Principal Component Analysis (PCA) is used to reduce dimensionality to address noise and the curse of
dimensionality. Based on cumulative variance analysis, 50 principal components are selected as they retain 95%
of the volatility in the data Figure 1, in line with optimal practice in PCA-based anomaly detection.
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Figure 1. PCA scree plot and cumulative variance explained (95% variance retained with 50 components)

In this study, Principal Component Analysis (PCA) was employed as a dimensionality reduction technique to mitigate
the impact of noise and the curse of dimensionality, which often hinder the performance of anomaly detection
algorithms. As illustrated in Figure 1, the scree plot (left) shows the variance explained by each principal component,
where the initial components capture the majority of data variability, while subsequent components contribute
progressively less. The cumulative variance plot (right) indicates that approximately 50 principal components are
sufficient to retain 95% of the variance within the dataset. This threshold is commonly adopted in PCA-based anomaly
detection to achieve an optimal balance between computational efficiency and information preservation. By reducing
the high-dimensional feature space to 50 components, the model is able to focus on the most informative features,
thereby improving training stability and detection accuracy while minimizing redundancy. The adoption of PCA at
this stage ensures that the anomaly detection methods—One-Class SVM and Isolation Forest—are applied to a more
compact and meaningful representation of the data, ultimately enhancing their effectiveness in identifying structural
and non-structural anomalies.

2.3. One-Class SVM Model Training (Main Method)

The following settings are used to implement OCSVM as the main method [11]:

1. Kernel: Due to its ability to represent the non-linear distribution of MNIST data, Radial Basis Function
(RBF) is selected as the kernel.

2. Parameter nu: If 5% of the data is anomalous, then the nu parameter is set to 0.05. To balance the risks of
overfitting and sensitivity, this value is determined through exploratory studies.

3. Training: The reduced-dimensional training data is used to train the model.
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Figure 2. OCSVM implementation workflow.

The workflow for implementing One-Class Support Vector Machine (OCSVM) in this study follows a structured
sequence designed to ensure reliable anomaly detection on the MNIST dataset. As illustrated in Figure 2, the process
begins with the input of raw image data, where each handwritten digit is represented as a 784-dimensional pixel vector.
The data then undergoes a preprocessing stage that includes normalization, scaling pixel values into the [0,1] range to
stabilize training and reduce brightness inconsistencies. Subsequently, Principal Component Analysis (PCA) is
applied for dimensionality reduction, condensing the original 784 features into 50 principal components while
retaining 95% of the variance. This step addresses both noise and the curse of dimensionality, making the data more
manageable for kernel-based learning. The reduced feature set is then used to train the OCSVM with a Radial Basis
Function (RBF) kernel, which effectively models complex nonlinear boundaries in the feature space. Finally, the
trained model performs anomaly detection by identifying digit samples that deviate significantly from the learned
representation of normal handwritten digits.

2.4. Isolation Forest Training (As a Comparison)
The advantages of OCSVM are evaluated by comparing it with Isolation Forest (IF). Among its configurations
are:
1. Contamination parameter: 0.1, assuming that 10% of the data is anomalous. This value is chosen to be
consistent with previous studies.
2. Number of estimators: 100 trees
Maximum samples: 256
4.  Partitioning mechanism: Using an efficient O(n) computational cost and performing random partitioning
until anomaly isolation is achieved.

ure 1

»

Isolation Forest Implementation Parameters

# Isolation Forest Implementation Parameters
from sklearn.ensemble import IsolationForest

# Configuration Parameters:
iso_forest = IsolationForest(

contamination=0.1, # 10% of data assumed anomalous
n_estimators=100, # Number of trees in ensemble
max_samples=256, # Maximum samples per tree
random_state=42 # For reproducibility

)

# Training Process:
iso_forest.fit(X train_pca)

# Anomaly Detection:
anomaly_scores = iso_forest.decision_function(X_test pca)
predictions = iso_forest.predict(X_test_pca) # -1: anomaly, 1: normal

Figure 3. Isolation Forest implementation parameters.

Figure 3 illustrates the implementation parameters used for the Isolation Forest (IF) model in this study. The
configuration begins with the assumption that 10% of the dataset is anomalous, set through the parameter
contamination=0.1. The model employs an ensemble of 100 decision trees (n_estimators=100), with each tree trained
on a maximum of 256 samples (max_samples=256) to balance efficiency and representativeness. To ensure
reproducibility of results, a fixed random seed (random_state=42) is applied. Once configured, the model is trained
using the PCA-transformed training data (X_train_pca). After training, the anomaly detection process is carried out
by computing anomaly scores with the decision_function, which assigns lower scores to more anomalous samples.
The final predictions are obtained through the predict method, where outputs are encoded as -1 for anomalies and 1

266



Barokah saadah, anomaly detection in mnist dataset using one-class svm

for normal instances. These parameters and workflow ensure that the Isolation Forest effectively isolates anomalous
handwritten digits by leveraging its recursive partitioning mechanism.

2.5. Model Evaluation
Evaluation is conducted through quantitative and qualitative approaches:

1.

1.
2.
2

Anomaly Score:

Score from OCSVM and IF are normalized using MinMaxScaler to facilitate understanding.

Histograms are used to display the score distribution (Figure 4).

Qualitative Analysis:

a.  Figures 5 and 6 show examples of abnormalities detected by OCSVM and IF as visual representations.

b. While IF findings are examined for small differences, this study focuses on patterns identified by
OCSVM, the primary approach, such as structural deformation.

Performance Metrics:

a. ROC-AUC: A metric used to assess the ability to distinguish between normal and abnormal. Since
MNIST lacks explicit anomaly labels, we define "normal" as one digit class (e.g., '0') and all others as
"anomalous," computing ROC-AUC as the average across all 10 one-vs-rest tasks — a standard
unsupervised evaluation protocol [12].

b. Training Time: Training time is recorded to compare computational efficiency [13].

2.6. Parameter Optimization

The parameters nu (OCSVM) and contamination (IF) are optimized through grid search on a validation data

subset (10% of the training data). The optimization criteria are to maximize ROC-AUC and minimize the false
positive rate. The exact parameter values used are: OCSVM uses RBF kernel with v = 0.05, IF uses
n_estimators=100, contamination=0.1, max_samples=256.

2.7. Statistical Validation

The difference in ROC-AUC (OCSVM: 0.92 vs. IF: 0.85) is tested for significance using DeLong's test at p

< 0.05 significance level to confirm that OCSVM's superior precision is not due to random variation.

2.8. Adaptability Validation

Additional testing was conducted on the Fashion-MNIST subset with identical settings to evaluate OCSVM's

adaptability to different image datasets. Future work will evaluate OCSVM on Fashion-MNIST to assess
generalizability beyond digit recognition, ensuring the method's universality.

3.

RESULTS AND DISCUSSION

3.1. Anomaly Score Distribution

The normalized anomaly score distribution from both approaches shows significant variation in detection

sensitivity (Figure 4):
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Figure 4. Normalized outlier score distribution comparison between One-Class SVM and Isolation
Forest.

Figure 4 illustrates the normalized outlier score distribution for both One-Class SVM (OCSVM) and Isolation

Forest (IF). The results indicate that OCSVM produces stricter detection limits, with scores concentrated around 0.4—
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0.5 (skewness = —0.3). This reflects the ability of the RBF kernel to accurately model normal distributions, thereby
identifying anomalies only in cases of extreme structural deviations. In contrast, IF yields a broader distribution of
scores between 0.3 and 0.7 (kurtosis = 2.1), demonstrating higher sensitivity to minor variations. This wider spread
is attributed to the random partitioning mechanism of IF, which enables anomaly detection based on isolation
complexity, including inconsistencies in writing style. These findings confirm that OCSVM is more suitable for
scenarios requiring precision, while IF offers greater flexibility in handling data variations.

3.2. Main Analysis: Anomaly Detection by One-Class SVM
The following trends are observed by visualizing the anomaly examples identified by OCSVM (Figure 5):
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Figure 5. Anomaly detection examples by One-Class SVM showing structural distortions.

Figure 5 presents examples of anomalies detected by the One-Class SVM (OCSVM) model on the MNIST dataset.
The digits correspond to instances that deviate from typical handwritten patterns, leading the model to classify them
as outliers. Several cases illustrate structural distortions, such as the number “5” without an upper loop (Index: 333)
and the number “8” with an open lower loop (Index: 197), both of which hinder accurate categorization as valid digits.
Another example is the “0” with a vertical line across its center (Index: 246), which may reflect scanning or writing
irregularities. In addition, the model identifies digits affected by extreme noise, including random strokes or pixel-
level artifacts that deviate from normal digit morphology. These anomalies align with the threshold parameter (v =
0.05), which restricts detection to only the most severe outliers. Overall, the results demonstrate that OCSVM is
effective in capturing both structural irregularities and noise-driven deviations that could compromise dataset quality,
making it particularly valuable for pre-training data validation in deep learning applications [14].

3.3. Comparative Analysis: Anomaly Detection by Isolation Forest

To further examine the characteristics of anomalies detected by the Isolation Forest (IF), a visual inspection of
selected samples from the MNIST dataset was conducted. Unlike One-Class SVM, which primarily identifies severe
structural distortions, Isolation Forest tends to capture digits that exhibit minor irregularities or stylistic deviations
while maintaining overall digit integrity. This approach highlights the model’s sensitivity to subtle inconsistencies in
handwriting style, curvature, or stroke variation, which may not necessarily alter the fundamental structure of the
digit. Figure 4 presents examples of anomalies flagged by IF, illustrating its tendency to identify less pronounced
deviations that fall outside the typical distribution of handwritten digits.
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Figure 6. Anomaly detection examples by Isolation Forest showing minor variations.
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Figure 6 displays anomalies detected by the Isolation Forest (IF) model on the MNIST dataset. Unlike One-Class
SVM, which focuses on strict structural deviations, IF identifies digits with more subtle irregularities that deviate
from the common distribution. Several examples demonstrate minor variations, such as the digit “9” with an
incomplete upper circle (Index: 54) and the digit “7” with a narrow tail (Index: 124). Similarly, the digit “3” (Index:
51) exhibits an exaggerated lower curve, which still represents a valid digit but is flagged as an anomaly due to its
uncommon writing pattern. In addition, IF detects inconsistencies in writing style, such as unusual variations in stroke
thickness, slant, or curvature, which do not alter the fundamental structure of the digit yet distinguish them from
typical samples. These results indicate that IF is more tolerant of structural integrity but highly sensitive to stylistic
deviations, making it particularly suitable for real-time anomaly detection or large-scale datasets where computational
efficiency and robustness to non-structural aberrations are essential.

3.4. Performance Comparison
To further evaluate the strengths and limitations of both approaches, a quantitative performance comparison was
conducted using key metrics, including score distribution, training time, precision, and sensitivity. The results are
summarized in Table 1.
Table 1. Performance Comparison

Aspect One-Class SVM Isolation Forest
Score Distribution Centralized (0.4-0.5) Spread (0.3-0.7)
Training Time 120 seconds 60 seconds
Precision (ROC-AUC) 0.92 0.85
Sensitivity Low (focuses on outliers) High (minor variations)

The difference in ROC-AUC is statistically significant (p < 0.05 by DeLong's test)

Table 1 presents a comparative evaluation of One-Class SVM (OCSVM) and Isolation Forest (IF) across several
key performance aspects. The results indicate that OCSVM produces a more centralized score distribution (0.4-0.5),
reflecting its strict boundary setting in anomaly detection, while IF generates a wider spread of scores (0.3—-0.7),
highlighting its flexibility in handling variations. In terms of efficiency, IF demonstrates a clear advantage, requiring
only 60 seconds for training compared to 120 seconds for OCSVM. However, precision measured by ROC-AUC
reveals the superiority of OCSVM (0.92 vs. 0.85), with the difference being statistically significant (p < 0.05 using
DeLong’s test). This trade-off reflects the distinct strengths of each method. The implications of these results show
that OCSVM, being more sensitive to large structural deviations, provides higher precision, making it highly suitable
for critical data validation scenarios [15]. Conversely, Isolation Forest, with its faster training time and broader
sensitivity to minor variations, is more computationally efficient and therefore better suited for real-time anomaly
detection or large-scale datasets where resource constraints are a concern.

4. CONCLUSION

This study provides a comprehensive comparison between One-Class SVM (OCSVM) and Isolation Forest (IF)
for anomaly detection on the MNIST dataset. The results demonstrate that OCSVM establishes stricter detection
boundaries, with scores concentrated between 0.4-0.5, enabling the model to capture severe structural distortions and
noise-driven anomalies with high precision (ROC-AUC = 0.92). This makes OCSVM highly suitable for critical data
validation tasks where reliability is paramount, such as pre-training quality checks in deep learning pipelines. In
contrast, IF produces a wider score distribution (0.3-0.7) and is more sensitive to minor variations and stylistic
inconsistencies in handwriting. While its precision is lower (ROC-AUC = 0.85), IF requires significantly less training
time (60 seconds compared to 120 seconds for OCSVM), highlighting its advantage in computational efficiency.
These findings indicate that OCSVM is preferable in applications demanding accuracy and robustness against
structural deviations, whereas IF is better suited for large-scale or real-time anomaly detection where efficiency and
scalability are prioritized. Overall, the study underscores the trade-off between precision and efficiency, offering
practical insights for selecting appropriate anomaly detection methods in real-world scenarios.
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