ANALISIS KLASIFIKASI ARAH HARGA KRIPTO MENGGUNAKAN POHON KEPUTUSAN (DECISION TREE): PENGUJIAN KETERGANTUNGAN PADA FITUR LAGGED DAN INDIKATOR TEKNIS
DOI:
https://doi.org/10.69916/comtechno.v3i2.399Keywords:
data mining, pohon keputusan, kripto, prediksi harga, feature engineeringAbstract
Pasar aset kripto dicirikan oleh volatilitas tinggi, menjadikannya tantangan signifikan dalam prediksi pergerakan harga. Penelitian ini bertujuan untuk mengklasifikasikan arah pergerakan harga harian (Naik/Turun) dari data historis kripto ("btcidr.csv") menggunakan algoritma Decision Tree. Proses Data Mining melibatkan pembersihan data, rekayasa fitur melalui penciptaan lagged features dan indikator teknis seperti Moving Average (MA), serta pembentukan variabel target Klasifikasi. Model yang dilatih menunjukkan Akurasi sebesar 60% pada data uji. Hasil evaluasi mengungkap adanya ketidakseimbangan kinerja: model sangat baik dalam memprediksi kelas Turun (Recall 0.88), namun lemah dalam memprediksi kelas Naik (Recall 0.32). Analisis Feature Importance menegaskan bahwa harga penutup hari ini (Terakhir) dan harga hari sebelumnya (Terakhir_lag1) adalah prediktor dominan, sementara indikator teknis (MA_5 dan Perubahan%) diabaikan oleh model sederhana ini. Disarankan penggunaan teknik oversampling dan model ensambel untuk meningkatkan sensitivitas prediksi kenaikan harga.
References
EUGENE F. FAMA, “EFFICIENT CAPITAL MARKETS : A REVIEW OF OF THEORY AND EMPIRICAL WORK,” pp. 383–417.
L. Catania, “Bitcoin at High Frequency,” no. 2017, pp. 1–20, 2019, doi: 10.3390/jrfm12010036.
Z. Muhidin, N. Karim, and M. M. Efendi, “Analysis of Splicing Manipulation in Digital Images using Dyadic Wavelet Transform ( DyWT ) and Scale Invariant Feature Transform ( SIFT ) Methods,” vol. 8, no. 2, pp. 408–412, 2024.
D. K. Gode and S. Sunder, “Allocative Efficiency of Markets with Zero-intelligence Traders : Market as a Partial Substitute for Individual Rationality,” vol. 101, no. 1, 1993.
S. V Tharun, G. Saranya, T. Tamilvizhi, and R. Surendran, “Cryptocurrency Price Prediction using Deep Learning,” pp. 1–18.
Wenti Ayu Wahyuni, M. N. Karim, and Z. Muahidin, “Penerapan algoritma xgboost dalam penentuan potensi sektor wisata lokal di lombok timur,” vol. 03, pp. 155–160, 2025.
J. Han, Micheline Kamber, and Jian Pei, Data Mining Concepts and Techniques.
“Machine Learning for Financial Forecasting Abstract,” no. Ml, pp. 240–257.
R. Forest et al., “A Comparative Hybrid Approach for Python Bug Detection Using Syntactic Features ,” vol. 19, no. 2, pp. 141–150, 2025.
J. Ross, Q. Morgan, and K. Publishers, “Programs for Machine Learning,” vol. 240, pp. 235–240, 1994.
R. Timofeev, “Classification and Regression Trees ( CART ) by,” 2004.
B. Norma, A. Abella, M. Multazam, Z. Hadi, and Z. Muahidin, “KLASIFIKASI PENYAKIT TANAMAN TEMBAKAU MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK ( CNN ) BERBASIS WEB,” vol. 3, no. 2, pp. 74–80, 2025.
K. Kim, “Financial time series forecasting using support vector machines,” vol. 55, pp. 307–319, 2003, doi: 10.1016/S0925-2312(03)00372-2.
M. Nabipour, P. Nayyeri, H. Jabani, A. Mosavi, E. Salwana, and S. Shahab, “Deep Learning for Stock Market Prediction,” pp. 1–22, 2020, doi: 10.3390/e22080840.
Biva Candra Lutfi Adiatma, Z. Muahidin, and kusrini, “Sistem Pemilihan Ruang Rawat Inap Menggunakan Metode Weighted Product dan K-Nearest Neighbor,” pp. 1–11.
S. Rasoul Safavian and David Landgrebe, “A Survey of Decision Wee Classifier Methodology,” vol. 21, no. 3, 1991.
Z. Muahidin, “PENERAPAN ALGORITMA COLLABORATIVE FILTERING PADA SISTEM INFORMASI PENYEWAAN JASA TOUR GUIDE BERBASIS WEB DI WISATA BENANG KELAMBU,” vol. 2, no. 2, pp. 83–88, 2024.
T. Lim, “A Comparison of Prediction Accuracy , Complexity , and Training Time of Thirty-three Old and New Classification Algorithms,” vol. 229, pp. 203–229, 2000.
M. N. Karim, M. M. Efendi, and Z. Muahidin, “PENERAPAN ARTIFICIAL NEURAL NETWORK DAN SUPPORT VECTOR MACHINE UNTUK KLASIFIKASI KUALITAS MUTIARA KHAS LOMBOK BERDASARKAN CIRI VISUAL,” PENERAPAN Artif. NEURAL Netw. DAN Support VECTOR Mach. UNTUK KLASIFIKASI KUALITAS MUTIARA KHAS Lomb. BERDASARKAN CIRI Vis., vol. 3, no. 1, pp. 39–47, 2025.
U. Fayyad, G. Piatetsky-shapiro, and P. Smyth, “From Data Mining to Knowledge Discovery in,” vol. 17, no. 3, pp. 37–54, 1996.
D. Pyle, S. Editor, and D. D. Cerra, Data Preparation for Data Mining. 1999.
H. R. Varian, “Big Data: New Tricks for Econometrics †,” vol. 28, no. 2, pp. 3–28, 2014.
S. Ataei, S. T. Ataei, and A. M. Saghiri, “Applications of Deep Learning to Cryptocurrency Trading : A Systematic Analysis,” vol. 2, pp. 1–38, 2025.
Trevor Hastie, R. Tibshirani, and Jerome H. Friedman, “The Elements of Statistical Learning”.
Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone, “Classification and Regression Trees,” vol. 535, pp. 534–535, 1987.
Thomas G. Dietterich, “Approximate Statistical Test for Comparing Supervised Classification Learning Algorithms”.
J. Li and S. Wang, “Feature Selection: A Data Perspective,” pp. 1–73.
A. W. Lo, H. Mamaysky, and J. Wang, “Foundations of Technical Analysis : Computational Algorithms , Statistical Inference , and Empirical Implementation,” vol. LV, no. 4, pp. 1705–1765, 2000.
Downloads
Published
Scite Metrics
Altmetric
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Fakhri Cholil, Akhlis Munazilin

This work is licensed under a Creative Commons Attribution 4.0 International License.








