INTELLIGENT CHATBOT FOR ENHANCING ACADEMIC CONSULTATION SERVICES IN VOCATIONAL SCHOOLS USING NATURAL LANGUAGE PROCESSING
DOI:
https://doi.org/10.69916/jkbti.v5i1.389Keywords:
intelligent chatbot, academic consultation, vocational schools, natural language processing, student support.Abstract
Academic consultation is essential in supporting students’ learning, personal development, and career planning in vocational schools. Traditional consultation services, however, often face challenges such as limited advisor availability, time constraints, and inefficient record-keeping, which reduce service effectiveness and accessibility. This study proposes the development of an intelligent chatbot to enhance academic consultation services at Vocational High School (SMK) Multi Karya using Natural Language Processing (NLP). The chatbot serves as a virtual assistant capable of understanding students’ queries in natural language, providing real-time guidance, and recording consultation history for further analysis. The system integrates modules for user authentication, account management, class and subject management, schedule organization, consultation history, and interactive chat. Evaluation results demonstrate that the chatbot improves accessibility by enabling students to consult anytime, enhances efficiency through automation of administrative tasks, and delivers context-aware, personalized responses. Interaction logs allow administrators to monitor and evaluate service quality, facilitating data-driven improvements. Despite limitations in handling ambiguous or complex queries, and the need to address ethical considerations such as data privacy and algorithmic bias, the chatbot represents a practical and innovative solution for modernizing academic consultation in vocational education. This study highlights the potential of AI-driven chatbots to provide inclusive, responsive, and effective student support, establishing a foundation for future advancements in educational technology and intelligent learning systems.
Downloads
References
T. Rusmayana, “Model pembelajaran addie integrasi pedati di smk pgri karisma bangsa sebagai pengganti praktek kerja lapangan dimasa pandemi covid-19,” 2021.
A. Fu’adi, R. N. Zubaidah, and B. J. M. Putra, “Sistem Informasi Monitoring Perkembangan Anak Usia Dini Berbasis Web,” J. Electr. Electron. Mech. Inform. Soc. Appl. Sci., vol. 1, no. 2, pp. 17–24, 2022, doi: 10.58991/eemisas.v1i2.14.
A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” J. Tekno Kompak, vol. 15, no. 2, p. 25, 2021, doi: 10.33365/jtk.v15i2.1162.
J. Hutagalung, “Pemetaan Siswa Kelas Unggulan Menggunakan Algoritma K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, pp. 606–620, 2022, doi: 10.35957/jatisi.v9i1.1516.
A. Kristian, A. Nurochmah, and A. Wahed, “Penerapan Sistem Poin Pelanggaran Dalam Meningkatkan Kedisiplinan Siswa di SMA Negeri 5 Tana Toraja Implementation of Violation Point System in Improving Student Discipline in Senior High School 5 Tana Toraja,” Pinisi J. Educ., pp. 1–7, 2022.
B. Sembiring, S. Natalia, H. Winata, and S. Kusnasari, “Pengelompokan Prestasi Siswa Menggunakan Algoritma K-Means,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 1, p. 31, 2022, doi: 10.53513/jursi.v1i1.4784.
S. Tjahjanto, B. S. Yulistiawan, E. Krisnanik, and R. R. Faizi, Buku Sistem Informasi Manajemen. Penerbit Widina, 2025.
A. Simorangkir, P. Intani Sihite, C. Lusia Kiareni, R. Priskila, and V. Handrianus Pranatawijaya, “Pemodelan Chatbot Rekomendasi Hotel Dengan Menggunakan Natural Language Processing,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 9, no. 1, pp. 46–50, 2024, doi: 10.51876/simtek.v9i1.371.
P.-H. Kuo, S.-T. Lin, J. Hu, and C.-J. Huang, “Multi-Sensor Context-Aware Based Chatbot Model: An Application of Humanoid Companion Robot,” Sensors, 2021, doi: 10.3390/s21155132.
A. Prastyono, B. H. Gautama, and I. Zhafranianto, “Penggunaan Chatbot Artificial Intelligence dan Pembangunan Karakter Mahasiswa: Sebuah Studi Empiris,” J. Minfo Polgan, vol. 12, no. 2, pp. 2551–2560, 2023, doi: 10.33395/jmp.v12i2.13316.
M. Mustaqim, A. Gunawan, Y. B. Pratama, and I. Zaliman, “Pengembangan Chatbot Layanan Publik Menggunakan Machine Learning Dan Natural Languange Processing,” J. Inf. Technol. Soc., vol. 1, no. 1, pp. 1–4, 2023, doi: 10.35438/jits.v1i1.16.
S. J. Raka and A. R. Emanuel, “Perancangan Desain Chatbot Berdasarkan Perencanaan Arsitektur Enterprise Menggunakan TOGAF ADM,” CESS (Journal Comput. Eng. Syst. Sci., vol. 6, no. 2, p. 200, 2021, doi: 10.24114/cess.v6i2.22611.
N. Rohim and E. Zuliarso, “Penerapan Algoritma Deep Learning Untuk Pengembangan Chatbot Yang Digunakan Untuk Konsultasi Dan Pengenalan Tentang Virus Covid-19,” Pixel J. Ilm. Komput. Graf., 2022, doi: 10.51903/pixel.v15i2.777.
G. S. Mahendra et al., Tren Teknologi AI: Pengantar, Teori, dan Contoh Penerapan Artificial Intelligence di Berbagai Bidang. PT. Sonpedia Publishing Indonesia, 2024.
M. F. Fadli, G. A. Buntoro, and F. Masykur, “Penerapan Algoritma Neural Network Pada Chatbot Pmb Universitas Muhammadiyah Ponorogo Berbasis Web,” JuSiTik J. Sist. dan Teknol. Inf. Komun., vol. 6, no. 1, pp. 13–22, 2023, doi: 10.32524/jusitik.v6i1.786.
R. Mantara, “Kecerdasan Buatan Dalam Pengembangan Sistem Komputer Yang Biasanya Memerlukan Kecerdasan Manusia,” J. Inform. Multi, vol. 2, no. 4, pp. 144–151, 2024.
G. S. Mahendra, S. R. Yahya, J. A. Widians, S. Sepriano, A. P. S. Iskandar, and D. Darwin, Artificial Intelligence Tools Populer: Penerapan & Implementasi Al Pada Dunia Kerja Dan Industri. PT. Sonpedia Publishing Indonesia, 2023.
Downloads
Published
Scite Metrics
Altmetric
How to Cite
Issue
Section
License
Copyright (c) 2026 Yolanda Estefania Hasibuan, Ahmad Zakir

This work is licensed under a Creative Commons Attribution 4.0 International License.














