A RECURRENT NEURAL NETWORK–BASED SENTIMENT ANALYSIS OF MOBILE LEGENDS APP REVIEWS

Authors

  • Naufal Ilmi Rangkuti Universitas Harapan Medan
  • Imran Lubis Universitas Harapan Medan

DOI:

https://doi.org/10.69916/jkbti.v5i1.390

Keywords:

sentiment analysis, mobile legends, RNN, deep learning

Abstract

With the rapid growth of mobile applications, user reviews have become a valuable source of feedback for developers. This study investigates the use of a Recurrent Neural Network (RNN) for sentiment analysis of Mobile Legends user reviews. The textual data were preprocessed through cleaning, tokenization, and padding, while sentiment scores were converted into categorical labels. A Sequential RNN model, consisting of an Embedding layer, a SimpleRNN layer, and a Dense output layer with softmax activation, was constructed to classify reviews into three sentiment categories: negative, neutral, and positive. During training, the model achieved approximately 75% accuracy, and the Mean Squared Error (MSE) was 0.1354. However, evaluation using the classification report and confusion matrix revealed that the model was biased toward the negative class due to class imbalance, failing to correctly classify neutral and positive reviews. The high overall accuracy was misleading, as the model’s performance was limited by the dominance of the negative class. These results highlight the limitations of using a simple RNN architecture for multi-class sentiment classification in imbalanced datasets. To improve performance, future work should consider balancing the dataset through resampling or synthetic data generation and employing more advanced sequential models, such as LSTM or GRU, possibly combined with attention mechanisms or pretrained language models, to better capture the characteristics of all sentiment classes.

Downloads

Download data is not yet available.

References

A. Subki and B. Imran, “Implementasi Deep Learning Menggunakan CNN dengan Arsitektur Alexnet Untuk Klasifikasi dan Identifikasi Jenis Kopi Khas Lombok Ahmad,” Explore, vol. 14, no. 2, pp. 135–140, 2024.

A. Ananta Firdaus, A. Id Hadiana, and A. Kania Ningsih, “Klasifikasi Sentimen pada Aplikasi Shopee Menggunakan Fitur Bag of Word dan Algoritma Random Forest,” Ranah Res. J. Multidiscip. Res. Dev., vol. 6, no. 5, pp. 1678–1683, 2024, doi: 10.38035/rrj.v6i5.994.

J. Shi, W. Li, Q. Bai, Y. Yang, and J. Jiang, “Syntax-enhanced aspect-based sentiment analysis with multi-layer attention,” Neurocomputing, vol. 557, no. November 2022, p. 126730, 2023, doi: 10.1016/j.neucom.2023.126730.

F. Faturohman, B. Irawan, S. Si, and C. Setianingsih, “Analisis Sentimen Pada Bpjs Kesehatan Menggunakan Recurrent Neural Network Sentiment Analysis on Bpjs Kesehatan Using Recurrent Neural Network,” e-Proceeding Eng., vol. 7, no. 2, pp. 4545–4552, 2020.

R. Subekti et al., Transformasi Digital: Teori & implementasi Menuju Era Society 5.0. PT. Sonpedia Publishing Indonesia, 2024.

A. Muhaddisi, “Sentiment Analysis With Sarcasm Detection on Politician’s Instagram,” Ijccs (Indonesian J. Comput. Cybern. Syst., 2021, doi: 10.22146/ijccs.66375.

L. Nursinggah, T. Mufizar, and U. Perjuangan, “ANALISIS SENTIMEN PENGGUNA APLIKASI X TERHADAP PROGRAM MAKAN SIANG GRATIS,” vol. 12, no. 3, 2024.

R. Cahyadi et al., “Recurrent Neural Network (Rnn) Dengan Long Short Term Memory (Lstm) Untuk Analisis Sentimen Data Instagram,” J. Inform. dan Komput., vol. 5, no. 1, pp. 1–9, 2020.

W. Irmayani, “PERSEPSI PUBLIK TERHADAP KENAIKAN PPN 12%: PENDEKATAN SENTIMEN PADA KOMENTAR YOUTUBE,” J. KHATULISTIWA Inform., vol. 12, no. 2, pp. 112–118, 2024.

D. Tauhida, “Media sosial sebagai arena diskusi keberagamaan: Analisis komentar netizen tentang hijab di Instagram,” Tatar Pas. J. Diklat Keagamaan, vol. 15, no. 1, 2024.

Y. Yullyana, D. Irmayani, and M. N. S. Hasibuan, “Content-Based Image Retrieval for Songket Motifs using Graph Matching,” Sinkron, vol. 7, no. 2, pp. 714–719, 2022, doi: 10.33395/sinkron.v7i2.11411.

F. R. Mulyadi and Y. Syahidin, “Rancang Bangun Sistem Informasi Kepegawaian Dengan Metode Waterfall,” Explor. Sist. Inf. dan Telemat., vol. 12, no. 2, p. 186, 2021, doi: 10.36448/jsit.v12i2.2056.

Guruh Wijaya, Dudi Irawan, Zainul Arifin, Hardian Oktavianto, Miftahur Rahman, and Ginanjar Abdurrahman, “Studi Klasifikasi Topik Berita Dengan Algoritma Machine Learning,” J-Ensitec, vol. 11, no. 01, pp. 10202–10206, 2024, doi: 10.31949/jensitec.v11i01.12037.

A. E. Nanda, A. N. Sihananto, and A. M. Rizki, “Analisis Sentimen Pada Pembatalan Tuan Rumah Indonesia Di Piala Dunia U-20 Menggunakan Fasttext Embeddings Dan Algoritma Recurrent Neural Network,” SABER J. Tek. Inform. Sains dan Ilmu Komun., vol. 2, no. 2, pp. 246–257, 2024.

H. Hambali, M. Mahayadi, and B. Imran, “Classification of Lombok Songket Cloth Image Using Convolution Neural Network Method (Cnn),” Pilar Nusa Mandiri, vol. 17, no. 85, pp. 149–156, 2021, doi: 10.33480/pilar.v17i2.2705.

Downloads

Published

2026-01-16

PlumX Metrics

Scite Metrics

Altmetric

How to Cite

[1]
Naufal Ilmi Rangkuti and Imran Lubis, “A RECURRENT NEURAL NETWORK–BASED SENTIMENT ANALYSIS OF MOBILE LEGENDS APP REVIEWS”, JKBTI, vol. 5, no. 1, pp. 11–17, Jan. 2026.