IMPLEMENTATION OF THE ARIMA ALGORITHM FOR ENHANCING AND FORECASTING COMPANY REVENUE
DOI:
https://doi.org/10.69916/jkbti.v5i1.392Keywords:
ARIMA, revenue forecasting, time series analysis, MAPE, financial planningAbstract
In an increasingly competitive business environment, accurate revenue forecasting is crucial for strategic decision-making. This study implements the ARIMA (AutoRegressive Integrated Moving Average) model to predict the monthly revenue of CV. Yusindo Mega Persada using historical data from January to December 2024. The ARIMA(1,1,1) model was selected based on stationarity tests and analysis of Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots. Diagnostic tests confirmed that the model met key assumptions, including normality of residuals and absence of significant autocorrelation, ensuring reliable predictions. The forecasting results for January to March 2025 indicated a relatively stable revenue trend, with values ranging from IDR 483 million to IDR 489 million. Model accuracy was evaluated using the Mean Absolute Percentage Error (MAPE), which resulted in 9.41%, suggesting reasonable predictive performance. The findings demonstrate that ARIMA is capable of capturing trends and fluctuations in dynamic revenue data, providing actionable insights for management in financial planning, resource allocation, and risk mitigation. Despite the model’s effectiveness, external factors such as market fluctuations and seasonal events may influence actual revenue, indicating the need to combine quantitative forecasts with expert judgment. Overall, this study confirms that the ARIMA(1,1,1) model is a practical and reliable tool for revenue forecasting in a dynamic business environment.
Downloads
References
B. Imran, Zaeniah, Sriasih, S. Erniwati, and Salman, “Data Mining Using a Support Vector Machine , Decision Tree , Logistic Regression and Random Forest for,” J. INFOKUM, vol. 10, no. 2, pp. 792–802, 2022.
D. K. H. Putra, “Analisis Perbandingan Model Prediksi Harga Saham melalui Pendekatan Long-Short Term Memory (LSTM) Dan Autoregressive Integrated Moving Average (ARIMA)(Studi Kasus: Alfamart dan Alfamidi).” Sekolah Tinggi Teknologi Terpadu Nurul Fikri, 2024.
M. T. Rahffi, “Implementasi Machine Learning dalam memprediksi Jumlah Pendonor Darah dengan menggunakan Model Autoregressive Integrated Moving Average (ARIMA) dan Exponential Moving Average (EMA)(Studi Kasus: PMI Kabupaten Sleman).” Universitas Islam Indonesia, 2024.
T. Y. Bhaktiningsih and L. P. Surbakti, “Akuntansi Manajemen Strategis dalam Era Digital: Review Literatur tentang Transformasi dan Inovasi,” J. Ilm. Manajemen, Ekon. Akunt., vol. 8, no. 3, pp. 1447–1457, 2024.
K. Anggraini and N. Hayati, “Studi Eksplorasi Faktor Penentu Penilaian Harga Saham Pt Semen Indonesia (Persero) TBK,” J. Revenue J. Ilm. Akunt., vol. 5, no. 1, pp. 656–674, 2024.
H. Hassyddiqy et al., “Analisis Peramalan ( Forecasting ) Penjualan Dengan Metode ( Autoregressive Integrated Moving Average ) Pada Huebee Indonesia,” Data Sci. Indones., vol. 2, no. 2, pp. 92–100, 2023.
L. D. Jayanti, R. Lestari, F. Aji, and D. Suparno, “Metode Autoregressive Integrated Moving Average ( ARIMA ) pada Aplikasi RStudio,” MARAS J. Penelit. Multidisplin, vol. 3, no. 4, pp. 1275–1289, 2025.
S. A. Sinaga, “Implementasi Metode Arima ( Autoregressive Moving Average ) Untuk Prediksi Penjualan Mobil,” J. Glob. Tecnol. Comput., vol. 2, no. 3, pp. 102–109, 2023.
H. Yeng and M. Siahaan, “Perancangan Sistem Prediksi Harga Saham Berbasis Website Menggunakan Algoritma Hybrid (ARIMA-LSTM),” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 13, no. 1, p. 61, 2024, doi: 10.35889/jutisi.v13i1.1620.
L. D. Gru, “Prediksi Penjualan Aerosol Menggunakan Algoritma ARIMA ,” vol. 4, no. 1, pp. 113–126, 2025, doi: 10.55123/insologi.v4i1.4868.
M. A. Putra, S. Andryana, S. Informasi, U. Nasional, J. Sawo, and M. Jakarta, “PERBANDINGAN ALGORITMA ARIMA DAN LSTM DALAM PERAMALAN TINGKAT KONSENTRASI CO2 EMISI ATMOSFER UNTUK MASA MENDATANG,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 3, pp. 4150–4157, 2025.
Y. Izzi, A. Amiri, and N. K. Wardati, “Peramalan Permintaan Produk Menggunakan ARIMA Berbasis Data Mining,” J. Inform. J. Pengemb. IT, vol. 10, no. 3, pp. 821–831, 2025, doi: 10.30591/jpit.v10i3.8665.
I. D. Lesmono, “Rancang Bangun Sistem Informasi Penjualan Sepatu Berbasis Website Dengan Metode Waterfall,” J. SWABUMI, vol. 6, no. 1, pp. 55–62, 2018, doi: 10.31294/swabumi.v6i1.3316.
N. S. Hanifah, “PREDIKSI PERTUMBUHAN UMKM DI KOTA BANDUNG MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE,” Infotronik J. Teknol. Inf. dan Elektron., vol. 9, no. 2, pp. 59–72, 2024.
S. N. R. Said, “ANALISIS TIME SERIES DAN CROSS SECTION PERBANDINGAN KINERJA KEUANGAN PADA PT MNC TBK, PT MD PICTURES TBK, DAN PT SURYA CITRA MEDIA TBK TAHUN 2022-2024,” KAIZEN Kaji. Ekon. Manajemen, Akuntansi, dan Kewirausahaan, vol. 3, no. 2, pp. 1–23, 2024.
Downloads
Published
Scite Metrics
Altmetric
How to Cite
Issue
Section
License
Copyright (c) 2026 Nanang Prayugo, Ilham Faisal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Akbar Adam Pratama, Ilham Faisal, IMPLEMENTATION OF THE WATERSHED METHOD FOR SEGMENTING PADANG TRADITIONAL CUISINE IMAGES TO IMPROVE CULINARY OBJECT RECOGNITION ACCURACY , Jurnal Kecerdasan Buatan dan Teknologi Informasi: Vol. 5 No. 1 (2026): January 2026 (In Progress)














