
SISTEM PENGENALAN WAJAH DENGAN METODE VIOLA JONES DAN ALGORITMA EIGENFACE PRINCIPAL COMPONENT ANALYSIS (PCA) UNTUK PROSES PRESENSI
DOI:
https://doi.org/10.69916/comtechno.v2i1.147Keywords:
Presensi, deteksi wajah, viola jones, algoritma EigenfaceAbstract
Dalam era digital, teknologi pengenalan wajah telah berkembang pesat dan diterapkan dalam berbagai bidang, termasuk sistem absensi. Sistem absensi konvensional sering menghadapi masalah seperti pemalsuan data, kehilangan kartu, dan ketidakefisienan. Teknologi pengenalan wajah menawarkan solusi yang lebih aman dan efisien dengan kemampuan mengidentifikasi individu secara otomatis dan akurat. Penelitian ini mengembangkan sistem absensi berbasis pengenalan wajah menggunakan metode Viola-Jones untuk deteksi wajah dan algoritma PCA Eigenface untuk pengenalan wajah. Metode Viola-Jones dikenal andal dalam deteksi wajah real-time, sementara PCA Eigenface efektif dalam mengurangi dimensi data wajah dan mempercepat proses pengenalan. Penggunaan metode tersebut berhasil dalam mendeteksi dan mengenali wajah dengan baik, dimana ditunjukkan dari hasil percobaan yang memperoleh hasil sebesar 96,25%. Percobaan dilakukan sebanyak 80 kali yang berasal dari 20 data wajah karyawan yang masing-masing di coba sebanyak 4 kali.
Kata Kunci: Presensi, deteksi wajah, viola jones, algoritma Eigenface;
References
B. Dinesh Kumar and S. Kareemulla, “Smart Mobile Attendance System for Employees Using QR Scanner,” Asian Journal of Applied Science and Technology (AJAST), vol. 1, no. 5, 2017.
L. Li, X. Mu, S. Li, and H. Peng, “A Review of Face Recognition Technology,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3011028.
U. R. Ughade, S. M. Gikwad, A. N. Yeole, and Dr. A. O. Mulani, “Automatic Attendance System Using Face Recognition,” Journal of Image Processing and Intelligent Remote Sensing, no. 34, 2023, doi: 10.55529/jipirs.34.11.18.
S. Bhattacharya, G. S. Nainala, P. Das, and A. Routray, “Smart attendance monitoring system (SAMS): A face recognition based attendance system for classroom environment,” in Proceedings - IEEE 18th International Conference on Advanced Learning Technologies, ICALT 2018, 2018. doi: 10.1109/ICALT.2018.00090.
T. R. Singh and K. B. Meitei, “Smart classroom environment based on attendance management using CNN based multi-layer neural networks,” in AIP Conference Proceedings, 2023. doi: 10.1063/5.0115250.
A. Rana, “Cloud based employee attendance management system using NFC and Face Recognition,” International Journal of Advance Research, vol. 5, no. 2, 2019.
P. Vyshnavi, “Employee Attendance Management System using Face Recognition,” Int J Res Appl Sci Eng Technol, vol. 9, no. VI, pp. 5303–5308, Jun. 2021, doi: 10.22214/ijraset.2021.36207.
D. M. Abdulhussien and L. J. Saud, “evaluation study of face detection by Viola-Jones algorithm,” Int J Health Sci (Qassim), 2022, doi: 10.53730/ijhs.v6ns8.13127.
A. M. Basbrain, J. Q. Gan, and A. Clark, “Accuracy enhancement of the viola-jones algorithm for thermal face detection,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017. doi: 10.1007/978-3-319-63315-2_7.
M. N. Chaudhari, M. Deshmukh, G. Ramrakhiani, and R. Parvatikar, “Face Detection Using Viola Jones Algorithm and Neural Networks,” in Proceedings - 2018 4th International Conference on Computing, Communication Control and Automation, ICCUBEA 2018, 2018. doi: 10.1109/ICCUBEA.2018.8697768.
P. Yaswanthram and B. A. Sabarish, “Face Recognition Using Machine Learning Models - Comparative Analysis and impact of dimensionality reduction,” in 2022 IEEE Fourth International Conference on Advances in Electronics, Computers and Communications (ICAECC), Jan. 2022, pp. 1–4. doi: 10.1109/ICAECC54045.2022.9716590.
H. Chin, K. H. Cheah, H. Nisar, and K. H. Yeap, “Enhanced Face Recognition Method Based on Local Binary Pattern and Principal Component Analysis for Efficient Class Attendance System,” in Proceedings of the 2019 IEEE International Conference on Signal and Image Processing Applications, ICSIPA 2019, 2019. doi: 10.1109/ICSIPA45851.2019.8977790.
Downloads
Published
Scite Metrics
Altmetric
How to Cite
Issue
Section
License
Copyright (c) 2024 Wenti Ayu Wahyuni, Surni Erniwati, Zaeniah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Siti Tuhpatussania, Surni Erniwati, Zaenul Mutaqin, PERBANDINGAN METODE AGGLOMERATIVE HIERARCHICAL CLUSTERING DAN METODE KMEDOIDS DALAM PENGELOMPOKAN DATA TITIK PANAS KEBAKARAN HUTAN DI INDONESIA , Journal Computer and Technology: Vol. 2 No. 1 (2024): Juli 2024