
ANALISIS SENTIMEN PEMILIHAN REMAJA TELADAN WILAYAH RATAHAN MENGGUNAKAN ALGORITMA NAIVE BAYES
DOI:
https://doi.org/10.69916/comtechno.v3i1.337Keywords:
analisis sentimen, naive bayes, remaja teladan, GMIM, ratahan.Abstract
Penelitian ini menganalisis sentimen publik terhadap "Pemilihan Remaja Teladan GMIM Wilayah Ratahan" menggunakan algoritma Naive Bayes. Data kuesioner terbuka dikumpulkan dari peserta dan pemangku kepentingan, kemudian diproses melalui tahapan pra-pemrosesan teks meliputi case folding, penghapusan tanda baca, dan tokenisasi. Sebagian kecil dari respons dilabeli secara manual ke dalam kategori positif, netral, dan negatif untuk melatih model Naive Bayes. Model yang telah dilatih kemudian digunakan untuk mengklasifikasikan data sentimen yang tersisa. Hasil penelitian mengungkapkan distribusi sentimen secara keseluruhan dan menyoroti aspek-aspek spesifik dari proses pemilihan yang mendapatkan umpan balik positif, netral, atau negatif, seperti pelaksanaan program, transparansi, dan dampaknya terhadap perkembangan remaja. Studi ini memberikan wawasan berharga untuk perbaikan inisiatif pengembangan remaja di organisasi keagamaan di masa mendatang.
This research analyzes public sentiment regarding the "Pemilihan Remaja Teladan GMIM Wilayah Ratahan" using the Naive Bayes algorithm. Open-ended questionnaire data was collected from participants and stakeholders, then processed through text preprocessing steps including case folding, punctuation removal, and tokenization. A subset of the responses was manually labeled into positive, neutral, and negative categories to train the Naive Bayes model. The trained model was subsequently used to classify the remaining sentiment data. The findings reveal the overall sentiment distribution and highlight specific aspects of the election process that garnered positive, neutral, or negative feedback, such as program execution, transparency, and impact on youth development. This study provides valuable insights for improving future youth development initiatives within religious organizations.
References
G. Siahaan and M. Pakpahan, “MEMBANGUN JIWA KEPEMIMPINAN KRISTEN SEJAK REMAJA,” Jurnal Pendidikan Sosial dan Humaniora, vol. 2, no. 2, 2023, [Online]. Available: https://publisherqu.com/index.php/pediaqu
D. Lumi and P. Lendoh, “STRATEGI PEMBINAAN REMAJA KRISTEN DALAM PEMANFAATAN GADGET MENYONGSONG ERA SOCIETY 5.0 DI JEMAAT GMIM IMANUEL TOKIN.” [Online]. Available: www.tagar.id/
B. F. S. Supriyanto and S. Rosalin, “Analisis Sentimen Program Merdeka Belajar dengan Text Analysis Wordcloud & Word Frequency,” Jurnal Minfo Polgan, vol. 12, no. 1, pp. 25–32, Mar. 2023, doi: 10.33395/jmp.v12i1.12312.
P. P. Wulan and H. Basri, “ANALISIS SENTIMEN TERHADAP LAYANAN NASABAH BANK MENGGUNAKAN TEKNIK KLASIFIKASI NAIVE BAYES SENTIMENT ANALYSIS OF BANKING CUSTOMER SERVICE USING NAIVE BAYES CLASSIFICATION TECHNIQUE,” Jurnal Kecerdasan Buatan dan Teknologi Informasi, vol. 3, no. 2, pp. 68–74, 2024.
A. W. Pradana and M. Hayaty, “The Effect of Stemming and Removal of Stopwords on the Accuracy of Sentiment Analysis on Indonesian-language Texts,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 375–380, Oct. 2019, doi: 10.22219/kinetik.v4i4.912.
V. Tarigan, “Pembuatan Aplikasi Data Mining Untuk Memperediksi Masa Studi Mahasiswa Menggunakan Algoritma Naive Bayes,” vol. 11, no. 1, 2023.
M. Syarifuddinn, “ANALISIS SENTIMEN OPINI PUBLIK MENGENAI COVID-19 PADA TWITTER MENGGUNAKAN METODE NAÏVE BAYES DAN KNN,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 23–28, Aug. 2020, doi: 10.33480/inti.v15i1.1347.
F. Septianingrum, J. H. Jaman, and U. Enri, “Analisis Sentimen Pada Isu Vaksin Covid-19 di Indonesia dengan Metode Naive Bayes Classifier,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 4, p. 1431, Oct. 2021, doi: 10.30865/mib.v5i4.3260.
Ni Made Tara Okta Adriana, I Made Agus Dwi Suarjaya, and Dwi Putra Githa, “Analisis Sentimen Publik Terhadap Aksi Demonstrasi di Indonesia Menggunakan Support Vector Machine Dan Random Forest,” Decode: Jurnal Pendidikan Teknologi Informasi, vol. 3, no. 2, pp. 257–267, Jun. 2023, doi: 10.51454/decode.v3i2.187.
N. Pavitha et al., “Movie recommendation and sentiment analysis using machine learning,” Global Transitions Proceedings, vol. 3, no. 1, pp. 279–284, Jun. 2022, doi: 10.1016/j.gltp.2022.03.012.
C. H. Yutika, A. Adiwijaya, and S. Al Faraby, “Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 422, Apr. 2021, doi: 10.30865/mib.v5i2.2845.
M. E. Apriyani, A. Fikri Nur, and E. S. Astuti, “Knowbase : International Journal of Knowledge in Database Performance Comparison of Naïve Bayes and SVM Algorithms in Sentiment Analysis on JKN Application Data,” International Journal of Knowledge in Database, vol. 04, no. 02, pp. 180–188, doi: 10.30983/knowbase.v4i2.8758.
K. Nurfebia and S. Sriani, “Sentiment Analysis of Skincare Products Using the Naive Bayes Method,” Journal of Information Systems and Informatics, vol. 6, no. 3, pp. 1663–1676, Sep. 2024, doi: 10.51519/journalisi.v6i3.817.
M. Khoirul, U. Hayati, and O. Nurdiawan, “ANALISIS SENTIMEN APLIKASI BRIMO PADA ULASAN PENGGUNA DI GOOGLE PLAY MENGGUNAKAN ALGORITMA NAIVE BAYES,” 2023.
Downloads
Published
Scite Metrics
Altmetric
How to Cite
Issue
Section
License
Copyright (c) 2025 Paskal Punusingon, Ade Yusupa, Victor Tarigan

This work is licensed under a Creative Commons Attribution 4.0 International License.