
MACHINE LEARNING-BASED CLASSIFICATION OF SPACE TRAVEL ELIGIBILITY USING SUPPORT VECTOR MACHINE, RANDOM FOREST, AND XGBOOST
DOI:
https://doi.org/10.69916/jkbti.v4i2.310Keywords:
classification models, interdimensional displacement, machine learning, passenger classification, space anomaly predictionAbstract
This study applies machine learning classification techniques to predict passenger displacement events based on corrupted data retrieved from a hypothetical interstellar spacecraft mission. Using a cleaned and preprocessed dataset containing demographic, behavioral, and exposure-related features, we compare the performance of three classification models: Random Forest, Support Vector Machine (SVM), and XGBoost. Each model is trained on 80% of the data and evaluated on the remaining 20% using precision, recall, f1-score, and accuracy metrics. The SVM model shows the most notable improvement after feature selection, achieving a balanced performance across metrics. Meanwhile, Random Forest and XGBoost models maintain consistent and robust accuracy above 80% on both training and testing sets. Feature importance analysis also supports the interpretability of the models, particularly in Random Forest and XGBoost. The comparative analysis demonstrates that ensemble-based methods such as Random Forest and XGBoost are more effective in handling the complexity of the dataset, making them suitable for predictive tasks in high-dimensional, partially incomplete data scenarios.
Downloads
References
M. Kaku, Quantum Supremacy: How the Quantum Computer Revolution Will Change Everything. Knopf Doubleday Publishing Group, 2023. [Online]. Available: https://books.google.co.id/books?id=FkKNEAAAQBAJ
G. K. O’Neill, 2081: A Hopeful View of the Human Future. in Touchstone book. Simon and Schuster, 1981. [Online]. Available: https://books.google.co.id/books?id=fyVmAAAAMAAJ
A. M. Hein, M. Pak, D. Pütz, C. Bühler, and P. Reiss, “World ships - Architectures & feasibility revisited,” 2012. Accessed: Apr. 12, 2025. [Online]. Available: https://www.researchgate.net/publication/236177990_World_Ships_-_Architectures_Feasibility_Revisited
E. A. Brettschneider, “Encompass Encompass Honors Theses Student Scholarship Exploring the Ethics of Human Space Travel: Navigating the Exploring the Ethics of Human Space Travel: Navigating the Challenges and Implications of Missions Past, Present, and Challenges and Implicati,” 2023, [Online]. Available: https://encompass.eku.edu/honors_theses/1000
G. Dautcourt and M. Abdel-Megied, “Revisiting the light cone of the Gödel universe,” Class. Quantum Gravity, vol. 23, no. 4, pp. 1269–1288, Feb. 2006, doi: 10.1088/0264-9381/23/4/013.
W. Northcutt and W. Northcutt, “A Theory of Gravity Based on Dimensional Perturbations of Objects in Flat Spacetime A Theory of Gravity Based on Dimensional Perturbations of Objects in Flat Spacetime,” pp. 0–119, 2025, doi: 10.20944/preprints202411.0620.v5.
M. Memarzadeh, A. Akbari Asanjan, and B. Matthews, “Robust and Explainable Semi-Supervised Deep Learning Model for Anomaly Detection in Aviation,” Aerospace, vol. 9, no. 8, p. 437, Aug. 2022, doi: 10.3390/aerospace9080437.
S. Cuéllar, M. Santos, F. Alonso, E. Fabregas, and G. Farias, “Explainable anomaly detection in spacecraft telemetry,” Eng. Appl. Artif. Intell., vol. 133, p. 108083, Jul. 2024, doi: 10.1016/j.engappai.2024.108083.
A. Polatoğlu and E. Gül, “Unveiling the impact of cosmic rays and solar activities on climate through optimized boost algorithms,” J. Atmos. Solar-Terrestrial Phys., vol. 265, p. 106360, Dec. 2024, doi: 10.1016/j.jastp.2024.106360.
E. Waisberg et al., “Challenges of Artificial Intelligence in Space Medicine,” Sp. Sci. Technol. (United States), vol. 2022, Jan. 2022, doi: 10.34133/2022/9852872.
J. Yan, A. P. Leung, Z. Pei, D. C. Y. Hui, and S. Kim, “DeepGrav: Anomalous Gravitational-Wave Detection Through Deep Latent Features,” Mar. 2025, Accessed: Apr. 12, 2025. [Online]. Available: https://arxiv.org/abs/2503.03799v2
G. Quaye, “Random Forest For High-Dimensional Data,” Open Access Theses Diss., Aug. 2024, Accessed: Apr. 12, 2025. [Online]. Available: https://scholarworks.utep.edu/open_etd/4201
A. Syahreza, N. K. Ningrum, and M. A. Syahrazy, “Perbandingan Kinerja Model Prediksi Cuaca: Random Forest, Support Vector Regression, dan XGBoost,” Edumatic J. Pendidik. Inform., vol. 8, no. 2, pp. 526–534, Dec. 2024, doi: 10.29408/EDUMATIC.V8I2.27640.
A. A. Akimov, D. R. Valitov, and A. I. Kubryak, “DATA PREPROCESSING FOR MACHINE LEARNING,” Научное обозрение. Технические науки (Scientific Rev. Tech. Sci., no. №2 2022, pp. 26–31, 2022, doi: 10.17513/srts.1391.
N. Alamsyah, B. Budiman, T. P. Yoga, and R. Y. R. Alamsyah, “XGBOOST HYPERPARAMETER OPTIMIZATION USING RANDOMIZEDSEARCHCV FOR ACCURATE FOREST FIRE DROUGHT CONDITION PREDICTION,” J. Pilar Nusa Mandiri, vol. 20, no. 2, pp. 103–110, Sep. 2024, doi: 10.33480/PILAR.V20I2.5569.
D. Berrar, “Cross-validation,” in Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, vol. 1–3, Elsevier, 2018, pp. 542–545. doi: 10.1016/B978-0-12-809633-8.20349-X.
H. Han, X. Guo, and H. Yu, “Variable selection using Mean Decrease Accuracy and Mean Decrease Gini based on Random Forest,” Proc. IEEE Int. Conf. Softw. Eng. Serv. Sci. ICSESS, vol. 0, pp. 219–224, Jul. 2016, doi: 10.1109/ICSESS.2016.7883053.
Dewi Widyawati and Amaliah Faradibah, “Comparison Analysis of Classification Model Performance in Lung Cancer Prediction Using Decision Tree, Naive Bayes, and Support Vector Machine,” Indones. J. Data Sci., vol. 4, no. 2, pp. 80–89, 2023, doi: 10.56705/ijodas.v4i2.76.
Downloads
Published
Scite Metrics
Altmetric
How to Cite
Issue
Section
License
Copyright (c) 2025 Teguh Rizali Zahroni, Bahtiar Imran, Muhammad Tahrir, Muh. Akshar, Zahrotul Isti’anah Marroh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Dede Haris Saputra, Bahtiar Imran, Juhartini, OBJECT DETECTION UNTUK MENDETEKSI CITRA BUAH-BUAHAN MENGGUNAKAN METODE YOLO , Jurnal Kecerdasan Buatan dan Teknologi Informasi: Vol. 2 No. 2 (2023): May 2023
- Rifqy Hamdani Pratama, Juhartini, Bahtiar Imran, SISTEM PAKAR DIAGNOSA PENYAKIT PADA AYAM MENGGUNAKAN METODE CERTAINTY FACTOR , Jurnal Kecerdasan Buatan dan Teknologi Informasi: Vol. 2 No. 2 (2023): May 2023
- Andre Satriawan, Bahtiar Imran, Surni Erniwati, IDENTIFIKASI KEMIRIPAN FOTO ASLI DAN SKETSA MENGGUNAKAN MODEL GENERATIF ADVERSARIAL NETWORK (GANs) , Jurnal Kecerdasan Buatan dan Teknologi Informasi: Vol. 2 No. 3 (2023): September 2023
- Rijalul Mujahidin Ndang, Zaeniah, Bahtiar Imran, RANCANG BANGUN SISTEM PAKAR DIAGNOSA PENYAKIT PADA TANAMAN CABAI DENGAN METODE CERTAINTY FACTOR , Jurnal Kecerdasan Buatan dan Teknologi Informasi: Vol. 2 No. 1 (2023): January 2023
- Hanis Purnamasidi, Salman, Lalu Darmawan Bakti, Bahtiar Imran, SISTEM PAKAR PEMILIHAN JENIS KREDIT NASABAH MENGGUNAKAN METODE FORWARD CHAINING PADA PT. BANK RAKYAT INDONESIA (PERSERO) , Jurnal Kecerdasan Buatan dan Teknologi Informasi: Vol. 1 No. 3 (2022): Desember 2022